

Cambridge IGCSE™

CO-ORDINATED SCIENCES

0654/23

Paper 2 Multiple Choice (Extended)

October/November 2024

45 minutes

You must answer on the multiple choice answer sheet.

* 6 7 6 0 9 2 7 4 *

You will need: Multiple choice answer sheet
Soft clean eraser
Soft pencil (type B or HB is recommended)

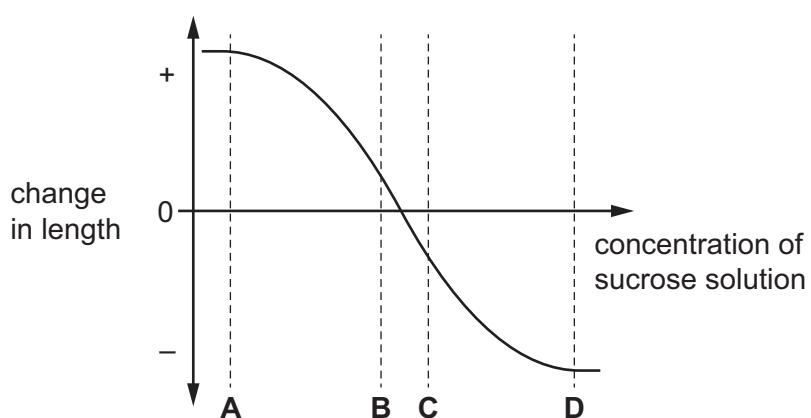
INSTRUCTIONS

- There are **forty** questions on this paper. Answer **all** questions.
- For each question there are four possible answers **A**, **B**, **C** and **D**. Choose the **one** you consider correct and record your choice in soft pencil on the multiple choice answer sheet.
- Follow the instructions on the multiple choice answer sheet.
- Write in soft pencil.
- Write your name, centre number and candidate number on the multiple choice answer sheet in the spaces provided unless this has been done for you.
- Do **not** use correction fluid.
- Do **not** write on any bar codes.
- You may use a calculator.

INFORMATION

- The total mark for this paper is 40.
- Each correct answer will score one mark.
- Any rough working should be done on this question paper.
- The Periodic Table is printed in the question paper.

This document has **20** pages. Any blank pages are indicated.


- 1 Soya seeds contain a lot of protein and are often fed to farm animals.

Which characteristic of living things will benefit from the soya seeds?

- A excretion
- B growth
- C movement
- D sensitivity

- 2 Pieces of potato of the same length were placed in sucrose solutions of different concentrations. Their length was measured again after two hours.

At which sucrose concentration were the pieces of potato most flaccid?

- 3 Four different foods labelled **A**, **B**, **C** and **D** are tested to find out which nutrients they contain.

Which food contains both starch and protein but **no** reducing sugar?

	final colour with Benedict's solution	final colour with biuret solution	final colour with iodine solution
A	blue	blue	orange
B	blue	purple	blue-black
C	red	blue	orange
D	red	purple	blue-black

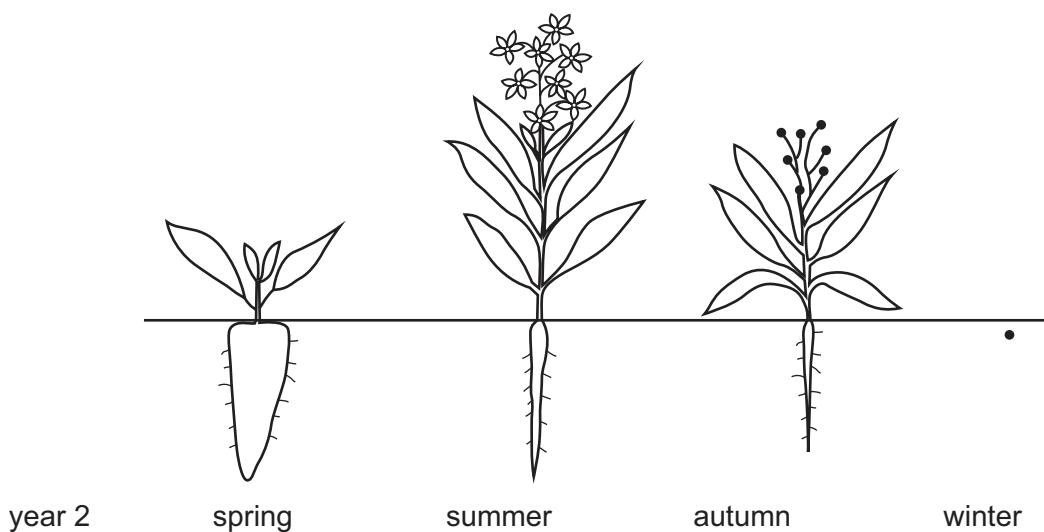
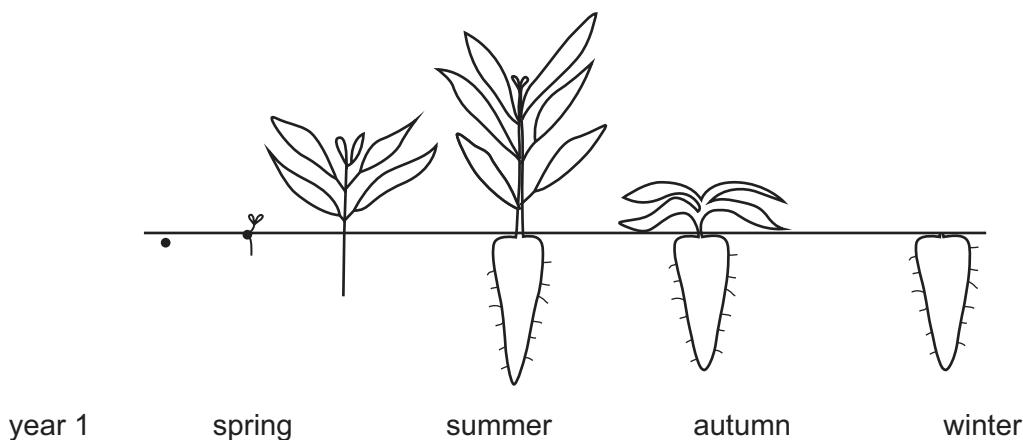
- 4 When the phenol molecules in apples are exposed to air, they react with oxygen and the fruit turns brown. This is an enzyme-controlled reaction.

The graph shows the effect of pH on the time taken for pieces of apple to turn brown.

Which statements are correct?

- 1 The optimum pH for this enzyme is between 5 and 6.
- 2 As the pH increases from 3 to 5, the phenol molecules and the enzyme move faster.
- 3 As the pH becomes higher than 6, the shape of the active site changes.

A 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only



- 5 What causes plant leaves to turn yellow?

- A** a lack of magnesium in the soil
- B** a lack of starch in the leaves
- C** a reduction in the rate of photosynthesis
- D** a reduction in the rate of respiration

- 6 Which component of a balanced diet is needed to prevent constipation?

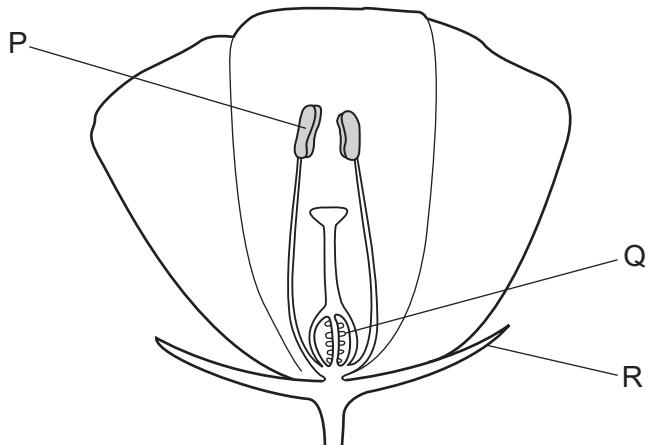
- A** carbohydrate
- B** fat
- C** protein
- D** fibre

- 7 The diagram shows the life cycle of a plant that takes two years to grow from a seed and produce new seeds.

Which row about the large root in year 1 and in year 2 is correct?

	in year 1 the root acts as a	in year 2 the root acts as a
A	sink	sink
B	sink	source
C	source	sink
D	source	source

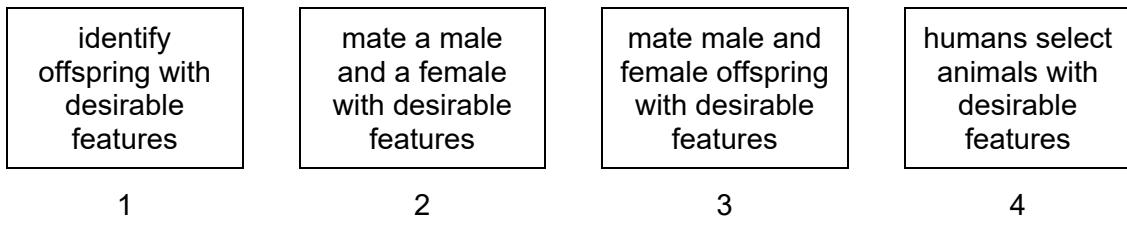
- 8 Which equation shows the metabolic process used in bread making?


- A** carbon dioxide + water \rightarrow glucose + oxygen
- B** glucose + oxygen \rightarrow carbon dioxide + water
- C** glucose \rightarrow ethanol + carbon dioxide
- D** glucose \rightarrow lactic acid

9 What are examples of involuntary actions?

- 1 widening of the pupil in dim light
- 2 increasing the pulse rate during exercise
- 3 contracting muscles to pick up a pencil

A 1, 2 and 3 **B** 1 and 2 only **C** 1 and 3 only **D** 2 and 3 only


10 The diagram shows a flower.

Which row names the structures labelled P, Q and R?

	P	Q	R
A	anther	ovary	sepal
B	anther	style	carpel
C	filament	ovary	carpel
D	filament	style	sepal

11 The boxes show the steps involved in artificial selection of an animal species.

Which sequence of steps is correct?

- A** 2 → 1 → 4 → 3
- B** 2 → 4 → 3 → 1
- C** 4 → 3 → 2 → 1
- D** 4 → 2 → 1 → 3

12 Which statement about all food chains is correct?

- A All the carnivores are producers.
- B All the consumers are carnivores.
- C All the herbivores are consumers.
- D All the producers are herbivores.

13 The release of fertiliser into rivers and lakes causes eutrophication which can lead to the death of fish.

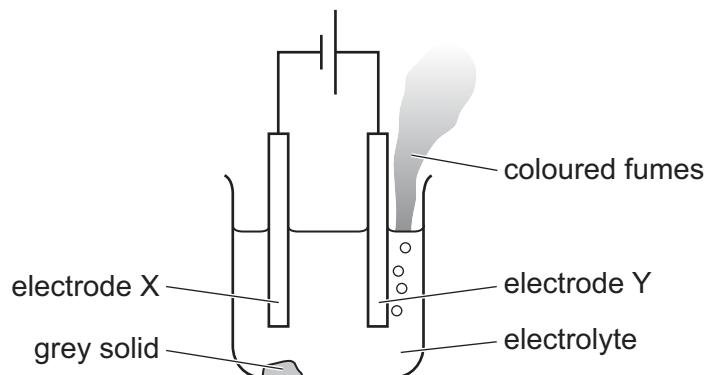
What causes the fish to die?

- A Decreased photosynthesis by producers reduces the carbon dioxide.
- B Increased photosynthesis by producers reduces the oxygen.
- C Increased decomposition reduces the carbon dioxide.
- D Increased decomposition reduces the oxygen.

14 The numbers of protons, neutrons and electrons in four particles are shown.

particle	number of protons	number of neutrons	number of electrons
W	20	20	20
X	19	20	19
Y	20	22	18
Z	21	24	21

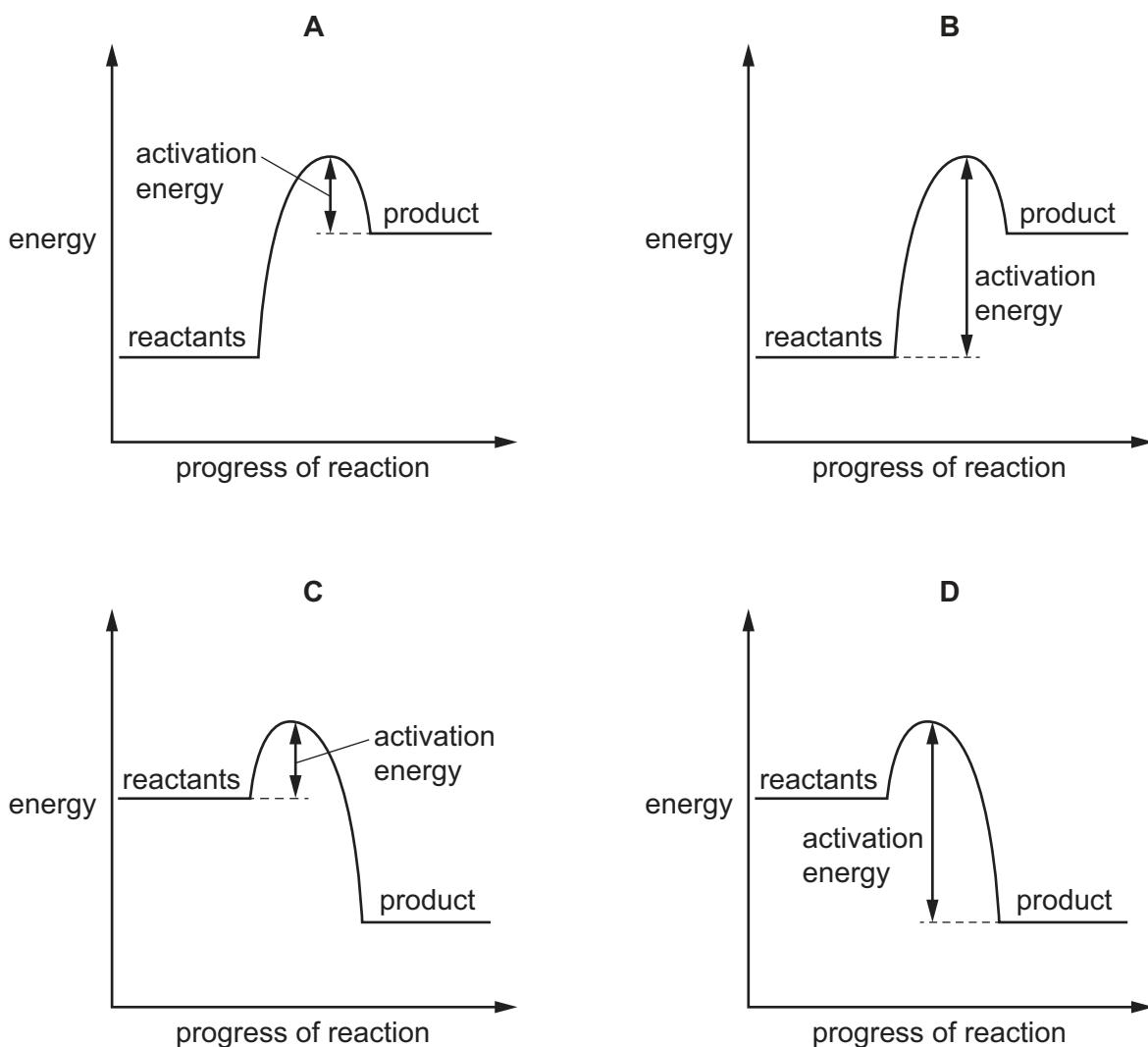
Which two particles are isotopes of the same element?

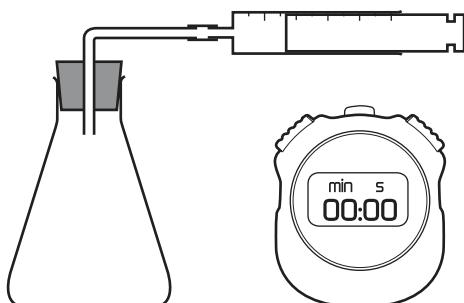

- A W and X
- B W and Y
- C X and Y
- D Y and Z

15 A sample of methane has mass 16.0 g at r.t.p. and contains the Avogadro number of molecules.

What is the volume of 4.0 g of methane at r.t.p.?

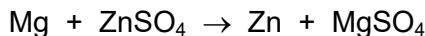
- A 4.0 dm³
- B 6.0 dm³
- C 16 dm³
- D 24 dm³


16 The diagram shows the electrolysis of molten lead(II) bromide using inert electrodes.


Which statement about this experiment is correct?

- A Electrode X is positively charged.
- B The coloured fumes are produced at the negative electrode.
- C The electrolyte is lead(II) bromide.
- D The grey solid is lead(II) bromide.

17 Which energy level diagram shows the activation energy for an exothermic reaction?


18 The apparatus used to determine the rate of a chemical reaction is shown.

For which reaction is the rate determined using this apparatus?

- A $\text{CaCO}_3 \rightarrow \text{CaO} + \text{CO}_2$
- B $2\text{C}_2\text{H}_6 + 7\text{O}_2 \rightarrow 4\text{CO}_2 + 6\text{H}_2\text{O}$
- C $\text{MgCO}_3 + 2\text{HCl} \rightarrow \text{MgCl}_2 + \text{CO}_2 + \text{H}_2\text{O}$
- D $\text{Cl}_2 + 2\text{NaBr} \rightarrow \text{Br}_2 + 2\text{NaCl}$

19 The equation for the reaction between magnesium and zinc sulfate is shown.

What happens to magnesium in this reaction?

- A It is oxidised because it gains electrons.
- B It is oxidised because it loses electrons.
- C It is reduced because it gains electrons.
- D It is reduced because it loses electrons.

20 Cobalt(II) chloride, cobalt(II) nitrate, and cobalt(II) sulfate are soluble in water.

Cobalt(II) oxide and cobalt(II) carbonate are insoluble in water.

Which method can be used to prepare a sample of solid cobalt(II) sulfate?

- A Mix aqueous sodium sulfate and aqueous cobalt(II) nitrate, then filter.
- B Mix excess aqueous sulfuric acid and aqueous cobalt(II) chloride, then filter and evaporate the filtrate.
- C Mix dilute sulfuric acid and an excess of cobalt(II) oxide, then distil.
- D Mix dilute sulfuric acid and an excess of cobalt(II) carbonate, then filter and evaporate the filtrate.

21 What is warmed with a salt to test for ammonium ions?

- A aqueous barium chloride
- B aqueous litmus
- C aqueous silver nitrate
- D aqueous sodium hydroxide

22 Which statement about the halogens is **not** correct?

- A Bromine is darker in colour than iodine.
- B Iodine is solid at room temperature.
- C They all have seven electrons in their outer shell.
- D They all form diatomic molecules.

23 Which statement describes a typical transition element?

- A It has a high melting point, high density and forms a coloured salt.
- B It has a high melting point, low density and forms a white salt.
- C It has a low melting point, low density and forms a coloured salt.
- D It has a low melting point, high density and forms a white salt.

24 When iron is galvanised, it is coated with a layer of zinc.

Which statements about galvanising are correct?

- 1 Zinc has a greater tendency to form positive ions than iron.
- 2 Zinc prevents iron from rusting by sacrificial protection.
- 3 Iron is more reactive than zinc.
- 4 Zinc acts as a barrier method of rust prevention if scratched.

A 1 and 2 B 1 and 4 C 2 and 3 D 3 and 4

25 Which three elements do most fertilisers contain?

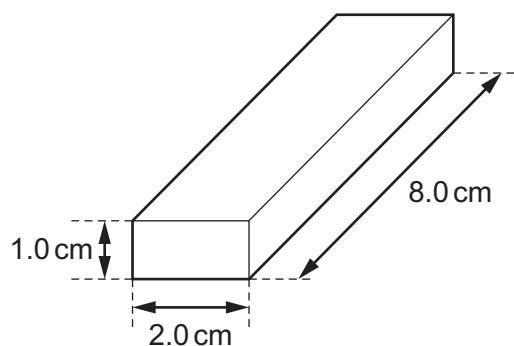
A Na, C, P B Na, P, K C K, C, N D K, P, N

26 Which reaction that occurs in the Contact process requires the use of a vanadium(V) oxide catalyst?

- A $S + O_2 \rightarrow SO_2$
- B $2SO_2 + O_2 \rightarrow 2SO_3$
- C $SO_3 + H_2SO_4 \rightarrow H_2S_2O_7$
- D $H_2S_2O_7 + H_2O \rightarrow 2H_2SO_4$

27 Reactants for three chemical processes are listed.

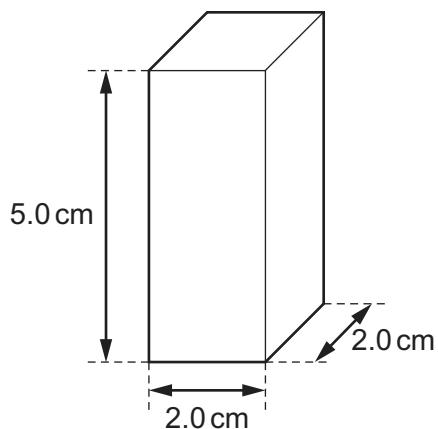
- 1 ethene + steam
- 2 ethene + hydrogen
- 3 ethene forming poly(ethene)


Which processes form saturated hydrocarbons?

A 1, 2 and 3 B 1 and 2 only C 1 and 3 only D 2 and 3 only

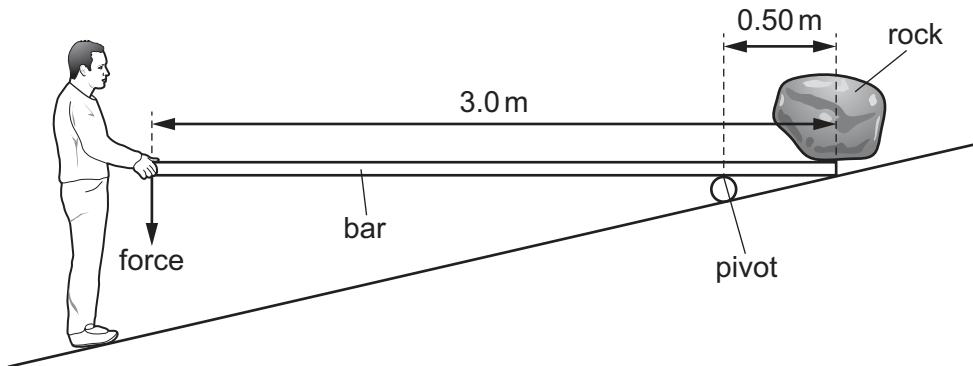
- 28 The diagrams show four solid blocks of equal mass.

Which block is made from the **least** dense material?


A

B

C



D

- 29 A person uses a bar that is 3.0 m long to lift a rock of weight 900 N off the ground. There is a pivot under the bar at 0.50 m from the rock.

The person pushes vertically downwards on the other end of the bar from the rock, as shown.

Ignore the weight of the bar.

What is the minimum force needed to lift the rock off the ground?

- A 150 N B 180 N C 4500 N D 5400 N

- 30 Which energy resource does **not** have the Sun as its source of energy?

- A coal
 B geothermal
 C hydroelectric
 D water waves

- 31 A sample of gas is sealed inside a container.

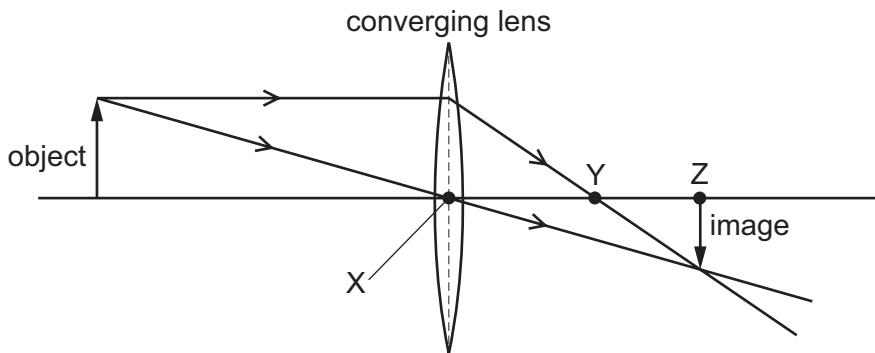
The volume of the container is slowly decreased. The temperature of the gas remains constant.

Which row describes and explains what happens to the pressure of the gas?

	description	explanation
A	pressure decreases	molecules collide with the container at lower speed
B	pressure decreases	molecules collide with the container less frequently
C	pressure increases	molecules collide with the container at greater speed
D	pressure increases	molecules collide with the container more frequently

- 32 There is a vacuum in the space between the Sun and the Earth.

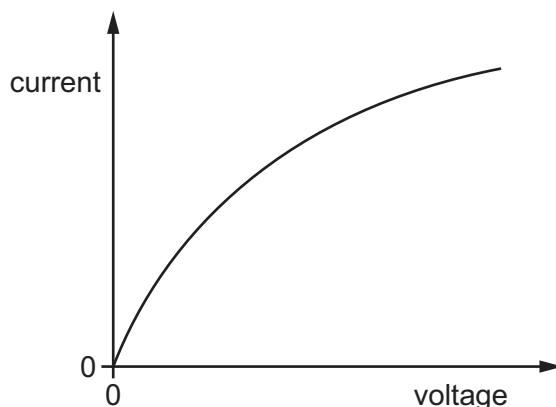
How is thermal energy transferred from the Sun to the Earth?


- A by conduction only
- B by convection only
- C by radiation only
- D by convection and radiation

- 33 A light wave travelling in air is refracted as it enters a glass block.

Which row shows the effect on the speed and the wavelength of the light wave as it enters the glass?

	speed	wavelength
A	decreases	decreases
B	decreases	no change
C	increases	increases
D	increases	no change


- 34 The diagram shows the formation of an image of an object by a converging lens. Three points are labelled X, Y and Z.

Which labelled point is a principal focus of the lens and which distance is the focal length?

	principal focus	focal length
A	Y	XY
B	Y	XZ
C	Z	XY
D	Z	XZ

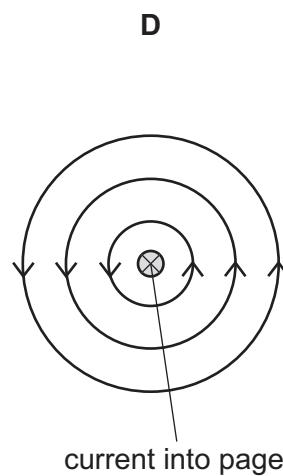
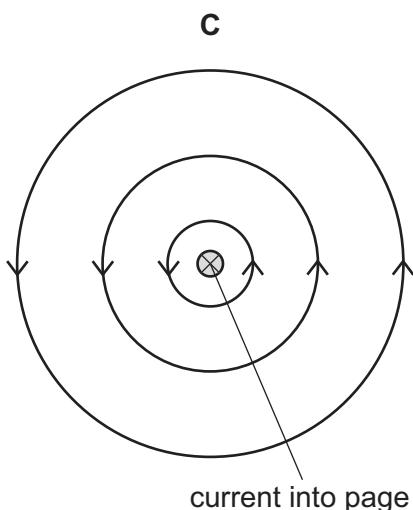
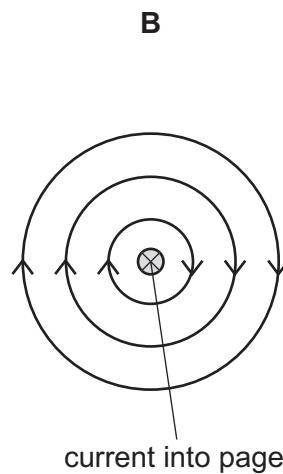
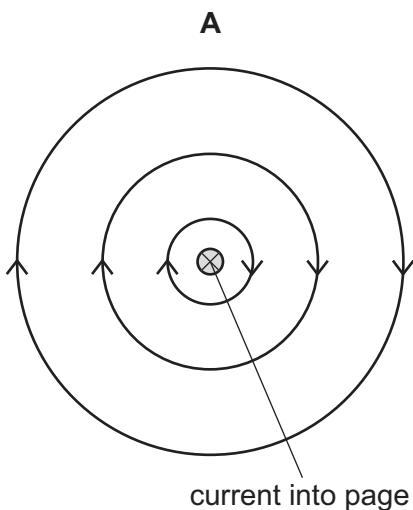
- 35 The current–voltage characteristic for a filament lamp is shown.


As the current increases, what happens to the temperature of the lamp filament and what happens to the resistance of the lamp filament?

	temperature of lamp filament	resistance of lamp filament
A	decreases	decreases
B	decreases	increases
C	increases	decreases
D	increases	increases

- 36 A 12Ω resistor is connected in parallel with a 6.0Ω resistor.

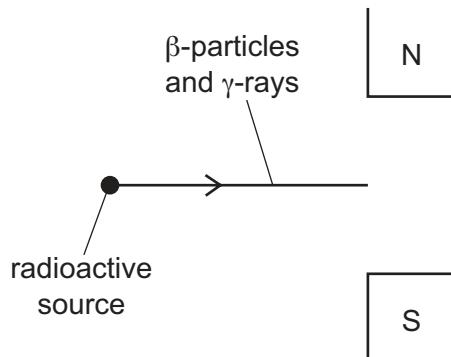
What is the combined resistance of the two resistors?





- A** 0.25Ω **B** 4.0Ω **C** 9.0Ω **D** 18Ω
- 37 An electric motor is connected to a power supply by insulated wires. The circuit is protected by a fuse, but the wires become hot.

Which change prevents the wires from becoming so hot?

- A** Connect a second identical fuse in the circuit.
B Use a fuse with a higher current rating.
C Use thicker connecting wires.
D Use thicker insulation on the connecting wires.

- 38 Which diagram shows the pattern and the direction of the magnetic field around a straight wire carrying a current into the page?



- 39 What is the purpose of the slip rings in an alternating current (a.c.) generator?

- A** to allow each end of the coil to contact each carbon brush alternately
- B** to allow each end of the coil to remain in contact with the same carbon brush at all times
- C** to maintain a constant voltage in the output circuit while the coil is rotating
- D** to remain stationary while the coil rotates between them

- 40 A radioactive source emits beta (β)-particles and gamma (γ)-rays.

Both types of radiation enter the magnetic field between the poles of a magnet, as shown.

In which direction does each type of radiation travel after entering the magnetic field?

	β -particles	γ -rays
A	into the page	into the page
B	into the page	straight on
C	out of the page	into the page
D	out of the page	straight on

BLANK PAGE

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

The Periodic Table of Elements

I		II		Group																																																																																																																																						
				I						II			III		IV		V		VI		VII		VIII																																																																																																																			
3	Li	4	Be	5	B	6	C	7	N	8	O	9	F	10	Ne	11	He	12	He	13	He	14	He	15	He																																																																																																																	
lithium		beryllium		boron	carbon	nitrogen	oxygen	fluorine	oxygen	oxygen	oxygen	oxygen	fluorine	neon	neon	helium	helium	helium	helium	helium	helium	helium	helium	helium	helium																																																																																																																	
7		9		11	12	14	15	16	14	16	16	16	19	19	19	20	21	22	23	24	25	26	27	28	29																																																																																																																	
11	Na	12	Mg	13	Al	14	Si	15	P	16	S	17	Cl	18	Ar	19	Ca	20	Sc	21	Ti	22	Cr	23	Fe	24																																																																																																																
sodium		magnesium		aluminum	silicon	phosphorus	sulfur	chlorine	phosphorus	sulfur	chlorine	chlorine	chlorine	chlorine	chlorine	chlorine	calcium	20	scandium	21	titanium	22	chromium	23	iron	24																																																																																																																
23																																																																																																																																										
19	K	20	Ca	21	Sc	22	Ti	23	V	24	Cr	25	Mn	26	Fe	27	Co	28	Ni	29	Zn	30	Ga	31	Ge	32																																																																																																																
potassium		calcium		scandium	titanium	vanadium	chromium	chromium	chromium	chromium	chromium	chromium	chromium	chromium	chromium	chromium	chromium	chromium	nickel	nickel	zinc	zinc	gallium	gallium	germanium	germanium																																																																																																																
39		40																	59	59	65	65	70	73	75	79																																																																																																																
37	Rb	38	Sr	39	Y	40	Zr	41	Nb	42	Mo	43	Tc	44	Ru	45	Rh	46	Pd	47	Ag	48	Cd	49	In	50																																																																																																																
rubidium		strontium		yttrium	zirconium	zirconium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium	niobium																																																																																																															
85																																																																																																																																										
56	Cs	56	Ba	57-71	Hf	72	Ta	73	W	74	Re	75	Os	76	Ir	77	Pt	78	Ir	79	Au	80	Hg	81	Tl	82																																																																																																																
caesium		barium		lanthanoids	hafnium	tantalum	tantalum	tantalum	tungsten	tungsten	rhenium	rhenium	osmium	osmium	osmium	osmium	osmium	platinum	platinum	platinum	gold	gold	mercury	201	thallium	204	133																												87	Fr	88	Ra	89-103	Rf	104	Db	105	Sg	106	Bh	107	Hs	108	Mt	109	Ds	110	Rg	111	Cn	112	Nh	113	F	114	francium		radium		actinoids	rutherfordium	dubnium	seaborgium	seaborgium	bohrium	roentgenium	—		—			—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—																		
133																																																																																																																																										
87	Fr	88	Ra	89-103	Rf	104	Db	105	Sg	106	Bh	107	Hs	108	Mt	109	Ds	110	Rg	111	Cn	112	Nh	113	F	114																																																																																																																
francium		radium		actinoids	rutherfordium	dubnium	seaborgium	seaborgium	bohrium	bohrium	bohrium	bohrium	bohrium	bohrium	bohrium	bohrium	bohrium	bohrium	roentgenium																																																																																																																							
—		—			—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—																																																																																																															

57	La	58	Ce	59	Pr	60	Nd	61	Pm	62	Sm	63	Eu	64	Gd	65	Tb	66	Dy	67	Ho	68	Er	69	Tm	70	Yb	71	Lu				
lanthanum		cerium		praseodymium	neodymium	—	—	—	—	—	—	—	europium																				
139		140		141	144	144	144	144	144	144	150	150	152	152	152	152	152	159	159	163	163	165	167	167	169	169	173	173					
89	Ac	90	Th	91	Pa	92	U	93	Np	94	Am	95	Cm	96	Bk	97	Cf	98	Es	99	Fm	100	Md	101	No	102	Os	103	Fr	103			
actinium		actinium		thorium	protactinium	protactinium	protactinium	protactinium	neptunium	berkelium																							
—		—		231	231	238	238	238	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—				

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).